Introduction of GFS history data¶
[1]:
def print_dict(d, indent=0):
for key, value in d.items():
if isinstance(value, dict):
print(' ' * indent + f"\033[1;32m{key}:\033[0m") #\033[1;32m{k}:\033[0m
print_dict(value, indent + 4)
else:
print(' ' * indent + f"\033[1;32m{key}:\033[0m {value if value is not None else 'null'}")
[2]:
import intake
import pandas as pd
import xarray as xr
import warnings
warnings.filterwarnings('ignore')
# open metadata description file
cat = intake.open_catalog('intake-yaml/his_gfs.yaml')
cat.date = '2021032312'
print(print_dict(cat.metadata))
# check group in the file
print(f'There are groups: {list(cat)}')
#print('each detail are below:\n')
# metadata for a group
#for g in list(cat):
# print(f'=====Information for group {g}=====')
# print(cat[g])
# read a group into dask
#cat['forecast'](date='2021032312').to_dask() #cat.forecast
description: GFS history data over China range. Downloaded from NCEP. Starts from 2021-3-23. Access by {endpoint}/{batch_folders}. Due to their different time length, variables are devided into three groups(anl, f000 and forecast). In these groups variables are different.
version: 1
stored:
tag: GFS_HIS
endpoint: us3://nwp/gfs/history
batch_folders: gfs.{YYYYMMDD}{00/12}.zarr
catalog: NWP|GFS|HISTORY
var_dims: var(time, latitude, longitude)
grid_type: regular_ll
latitude: 0,60
longitude: 70,140
lat_inc: 0.25
lon_inc: 0.25
time_list: time[anl, range(1,121), range(123,385,3)]
format: zarr
batch: [0, 12]
arrive_time: not set
produced_by: NCEP
up: not set
down: not set
filename_rule: gfs.{YYYYMMDD}{00/12}.zarr
office_web: not set
index_all: 210 files per batch
history_time: since 2021-3-23
history_dize: under calculation
history_path: us3://nwp/gfs/history
history_format: zarr
references: null
variables: check below
driver: zarr
process: null
log: null
source: download from NCEP
storage_policy: zip zarr on us3
origin:
url: s3://noaa-gfs-bdp-pds/gfs.{YYYYMMDD}/{batch}/atmos/gfs.t00z.pgrb2.0p25.[anl|f{forecast_hour}]
download_method: awscli cp --no-sign-request
filename_rule: same name in each day's directory. forecast_hour range(0,121,1), range(123,385,3)
format: grib2
batch: 00/06/12/18 daily
variables: check below
space_inc: 0.25
official_introduction: null
parameters:
endpoint:
type: str
description: The base directory for the data. Usually it's the first farther directory of daily sub-directory.
default: /data/sample_data/
date:
type: str
description: The date to read data, a str with format 'YYYYMMDDbb', bb is the batch 00 or 12, default is '2021032300'
default: 2021032312
reference: null
None
There are groups: ['anl', 'f000', 'forecast']
[3]:
import ipywidgets as widgets # 控件库
from IPython.display import display # 显示控件的方法
import xarray
base = cat.user_parameters['endpoint'].default
batch = cat.user_parameters['date'].default
ds = xr.open_dataset(f"{base}gfs.{batch}.zarr.zip", group='forecast', engine='zarr', consolidated=True)
#print(ds)
print('information for group forecast')
cat['forecast'](date='2021032312').to_dask()
print("以下为group forecast的查询,请输入变量后回车查询,或从列表中选择变量查询")
output = widgets.Output()
text = widgets.Text()
def print_value(sender):
with output:
#cat['forecast'](date='2021032312').to_dask()[sender.value] #cat.forecast
if sender.value in ds.data_vars.keys():
print(ds[sender.value])
else:
print(f"no such variable")
text.on_submit(print_value)
def chosen(_):
with output:
print(ds[dpd.value])
variable_names = ds.data_vars.keys()
dpd = widgets.Dropdown(
options=variable_names,
disabled=False,
)
dpd.observe(chosen, names="value")
out = widgets.Output(layout={'border': '1px solid black'})
clear_button = widgets.Button(description='Clear Output')
clear_button.on_click(lambda x:output.clear_output())
display(clear_button)
display(text, dpd)
display(output)
information for group forecast
以下为group forecast的查询,请输入变量后回车查询,或从列表中选择变量查询
[4]:
print('sample of time series')
print(ds['DPT_2maboveground']['time'].values)
sample of time series
['2021-03-23T13:00:00.000000000' '2021-03-23T14:00:00.000000000'
'2021-03-23T15:00:00.000000000' '2021-03-23T16:00:00.000000000'
'2021-03-23T17:00:00.000000000' '2021-03-23T18:00:00.000000000'
'2021-03-23T19:00:00.000000000' '2021-03-23T20:00:00.000000000'
'2021-03-23T21:00:00.000000000' '2021-03-23T22:00:00.000000000'
'2021-03-23T23:00:00.000000000' '2021-03-24T00:00:00.000000000'
'2021-03-24T01:00:00.000000000' '2021-03-24T02:00:00.000000000'
'2021-03-24T03:00:00.000000000' '2021-03-24T04:00:00.000000000'
'2021-03-24T05:00:00.000000000' '2021-03-24T06:00:00.000000000'
'2021-03-24T07:00:00.000000000' '2021-03-24T08:00:00.000000000'
'2021-03-24T09:00:00.000000000' '2021-03-24T10:00:00.000000000'
'2021-03-24T11:00:00.000000000' '2021-03-24T12:00:00.000000000'
'2021-03-24T13:00:00.000000000' '2021-03-24T14:00:00.000000000'
'2021-03-24T15:00:00.000000000' '2021-03-24T16:00:00.000000000'
'2021-03-24T17:00:00.000000000' '2021-03-24T18:00:00.000000000'
'2021-03-24T19:00:00.000000000' '2021-03-24T20:00:00.000000000'
'2021-03-24T21:00:00.000000000' '2021-03-24T22:00:00.000000000'
'2021-03-24T23:00:00.000000000' '2021-03-25T00:00:00.000000000'
'2021-03-25T01:00:00.000000000' '2021-03-25T02:00:00.000000000'
'2021-03-25T03:00:00.000000000' '2021-03-25T04:00:00.000000000'
'2021-03-25T05:00:00.000000000' '2021-03-25T06:00:00.000000000'
'2021-03-25T07:00:00.000000000' '2021-03-25T08:00:00.000000000'
'2021-03-25T09:00:00.000000000' '2021-03-25T10:00:00.000000000'
'2021-03-25T11:00:00.000000000' '2021-03-25T12:00:00.000000000'
'2021-03-25T13:00:00.000000000' '2021-03-25T14:00:00.000000000'
'2021-03-25T15:00:00.000000000' '2021-03-25T16:00:00.000000000'
'2021-03-25T17:00:00.000000000' '2021-03-25T18:00:00.000000000'
'2021-03-25T19:00:00.000000000' '2021-03-25T20:00:00.000000000'
'2021-03-25T21:00:00.000000000' '2021-03-25T22:00:00.000000000'
'2021-03-25T23:00:00.000000000' '2021-03-26T00:00:00.000000000'
'2021-03-26T01:00:00.000000000' '2021-03-26T02:00:00.000000000'
'2021-03-26T03:00:00.000000000' '2021-03-26T04:00:00.000000000'
'2021-03-26T05:00:00.000000000' '2021-03-26T06:00:00.000000000'
'2021-03-26T07:00:00.000000000' '2021-03-26T08:00:00.000000000'
'2021-03-26T09:00:00.000000000' '2021-03-26T10:00:00.000000000'
'2021-03-26T11:00:00.000000000' '2021-03-26T12:00:00.000000000'
'2021-03-26T13:00:00.000000000' '2021-03-26T14:00:00.000000000'
'2021-03-26T15:00:00.000000000' '2021-03-26T16:00:00.000000000'
'2021-03-26T17:00:00.000000000' '2021-03-26T18:00:00.000000000'
'2021-03-26T19:00:00.000000000' '2021-03-26T20:00:00.000000000'
'2021-03-26T21:00:00.000000000' '2021-03-26T22:00:00.000000000'
'2021-03-26T23:00:00.000000000' '2021-03-27T00:00:00.000000000'
'2021-03-27T01:00:00.000000000' '2021-03-27T02:00:00.000000000'
'2021-03-27T03:00:00.000000000' '2021-03-27T04:00:00.000000000'
'2021-03-27T05:00:00.000000000' '2021-03-27T06:00:00.000000000'
'2021-03-27T07:00:00.000000000' '2021-03-27T08:00:00.000000000'
'2021-03-27T09:00:00.000000000' '2021-03-27T10:00:00.000000000'
'2021-03-27T11:00:00.000000000' '2021-03-27T12:00:00.000000000'
'2021-03-27T13:00:00.000000000' '2021-03-27T14:00:00.000000000'
'2021-03-27T15:00:00.000000000' '2021-03-27T16:00:00.000000000'
'2021-03-27T17:00:00.000000000' '2021-03-27T18:00:00.000000000'
'2021-03-27T19:00:00.000000000' '2021-03-27T20:00:00.000000000'
'2021-03-27T21:00:00.000000000' '2021-03-27T22:00:00.000000000'
'2021-03-27T23:00:00.000000000' '2021-03-28T00:00:00.000000000'
'2021-03-28T01:00:00.000000000' '2021-03-28T02:00:00.000000000'
'2021-03-28T03:00:00.000000000' '2021-03-28T04:00:00.000000000'
'2021-03-28T05:00:00.000000000' '2021-03-28T06:00:00.000000000'
'2021-03-28T07:00:00.000000000' '2021-03-28T08:00:00.000000000'
'2021-03-28T09:00:00.000000000' '2021-03-28T10:00:00.000000000'
'2021-03-28T11:00:00.000000000' '2021-03-28T12:00:00.000000000'
'2021-03-28T15:00:00.000000000' '2021-03-28T18:00:00.000000000'
'2021-03-28T21:00:00.000000000' '2021-03-29T00:00:00.000000000'
'2021-03-29T03:00:00.000000000' '2021-03-29T06:00:00.000000000'
'2021-03-29T09:00:00.000000000' '2021-03-29T12:00:00.000000000'
'2021-03-29T15:00:00.000000000' '2021-03-29T18:00:00.000000000'
'2021-03-29T21:00:00.000000000' '2021-03-30T00:00:00.000000000'
'2021-03-30T03:00:00.000000000' '2021-03-30T06:00:00.000000000'
'2021-03-30T09:00:00.000000000' '2021-03-30T12:00:00.000000000'
'2021-03-30T15:00:00.000000000' '2021-03-30T18:00:00.000000000'
'2021-03-30T21:00:00.000000000' '2021-03-31T00:00:00.000000000'
'2021-03-31T03:00:00.000000000' '2021-03-31T06:00:00.000000000'
'2021-03-31T09:00:00.000000000' '2021-03-31T12:00:00.000000000'
'2021-03-31T15:00:00.000000000' '2021-03-31T18:00:00.000000000'
'2021-03-31T21:00:00.000000000' '2021-04-01T00:00:00.000000000'
'2021-04-01T03:00:00.000000000' '2021-04-01T06:00:00.000000000'
'2021-04-01T09:00:00.000000000' '2021-04-01T12:00:00.000000000'
'2021-04-01T15:00:00.000000000' '2021-04-01T18:00:00.000000000'
'2021-04-01T21:00:00.000000000' '2021-04-02T00:00:00.000000000'
'2021-04-02T03:00:00.000000000' '2021-04-02T06:00:00.000000000'
'2021-04-02T09:00:00.000000000' '2021-04-02T12:00:00.000000000'
'2021-04-02T15:00:00.000000000' '2021-04-02T18:00:00.000000000'
'2021-04-02T21:00:00.000000000' '2021-04-03T00:00:00.000000000'
'2021-04-03T03:00:00.000000000' '2021-04-03T06:00:00.000000000'
'2021-04-03T09:00:00.000000000' '2021-04-03T12:00:00.000000000'
'2021-04-03T15:00:00.000000000' '2021-04-03T18:00:00.000000000'
'2021-04-03T21:00:00.000000000' '2021-04-04T00:00:00.000000000'
'2021-04-04T03:00:00.000000000' '2021-04-04T06:00:00.000000000'
'2021-04-04T09:00:00.000000000' '2021-04-04T12:00:00.000000000'
'2021-04-04T15:00:00.000000000' '2021-04-04T18:00:00.000000000'
'2021-04-04T21:00:00.000000000' '2021-04-05T00:00:00.000000000'
'2021-04-05T03:00:00.000000000' '2021-04-05T06:00:00.000000000'
'2021-04-05T09:00:00.000000000' '2021-04-05T12:00:00.000000000'
'2021-04-05T15:00:00.000000000' '2021-04-05T18:00:00.000000000'
'2021-04-05T21:00:00.000000000' '2021-04-06T00:00:00.000000000'
'2021-04-06T03:00:00.000000000' '2021-04-06T06:00:00.000000000'
'2021-04-06T09:00:00.000000000' '2021-04-06T12:00:00.000000000'
'2021-04-06T15:00:00.000000000' '2021-04-06T18:00:00.000000000'
'2021-04-06T21:00:00.000000000' '2021-04-07T00:00:00.000000000'
'2021-04-07T03:00:00.000000000' '2021-04-07T06:00:00.000000000'
'2021-04-07T09:00:00.000000000' '2021-04-07T12:00:00.000000000'
'2021-04-07T15:00:00.000000000' '2021-04-07T18:00:00.000000000'
'2021-04-07T21:00:00.000000000' '2021-04-08T00:00:00.000000000'
'2021-04-08T03:00:00.000000000' '2021-04-08T06:00:00.000000000'
'2021-04-08T09:00:00.000000000' '2021-04-08T12:00:00.000000000']
[5]:
lat, lon = 38, 100
var = 'APCP_surface'
print(f'times series plot for {var}')
ds[var].sel(latitude=lat, longitude=lon).sortby('time').plot()
times series plot for APCP_surface
[5]:
[<matplotlib.lines.Line2D at 0x70811651adb0>]
[6]:
var = 'TMP_2maboveground'
time = '2021-04-02T12:00:00.000000000'
print(f'2D map for {var} at {time}')
ds[var].sortby('time').sel(time=time).plot.contourf()
2D map for TMP_2maboveground at 2021-04-02T12:00:00.000000000
[6]:
<matplotlib.contour.QuadContourSet at 0x70811c505d90>
[7]:
def print_dict(d, indent=0):
for key, value in d.items():
if isinstance(value, dict):
print(' ' * indent + f"\033[1;32m{key}:\033[0m") #\033[1;32m{k}:\033[0m
print_dict(value, indent + 4)
else:
print(' ' * indent + f"\033[1;32m{key}:\033[0m {value if value is not None else 'null'}")
[8]:
print('information for group anl')
cat['anl'](date='2021032312').to_dask()
information for group anl
[8]:
<xarray.Dataset> Size: 35MB Dimensions: (time: 1, latitude: 241, longitude: 281) Coordinates: * latitude (latitude) float64 2kB 0.0 0.25 0.5 ... 59.75 60.0 * longitude (longitude) float64 2kB 70.0 70.25 ... 139.8 140.0 * time (time) datetime64[ns] 8B 2021-03-23T12:00:00 Data variables: (12/128) HGT_1000mb (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> HGT_100mb (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> HGT_150mb (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> HGT_200mb (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> HGT_250mb (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> HGT_300mb (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> ... ... VGRD_750mb (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> VGRD_800mb (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> VGRD_80maboveground (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> VGRD_850mb (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> VGRD_900mb (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> VGRD_950mb (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> Attributes: Conventions: COARDS GRIB2_grid_template: 0 History: created by wgrib2
xarray.Dataset
- time: 1
- latitude: 241
- longitude: 281
- latitude(latitude)float640.0 0.25 0.5 ... 59.5 59.75 60.0
- long_name :
- latitude
- units :
- degrees_north
array([ 0. , 0.25, 0.5 , ..., 59.5 , 59.75, 60. ])
- longitude(longitude)float6470.0 70.25 70.5 ... 139.8 140.0
- long_name :
- longitude
- units :
- degrees_east
array([ 70. , 70.25, 70.5 , ..., 139.5 , 139.75, 140. ])
- time(time)datetime64[ns]2021-03-23T12:00:00
- long_name :
- verification time generated by wgrib2 function verftime()
- reference_date :
- 2021.03.23 12:00:00 UTC
- reference_time :
- 1616500800.0
- reference_time_description :
- analyses, reference date is fixed
- reference_time_type :
- 1
- time_step :
- 0.0
- time_step_setting :
- auto
array(['2021-03-23T12:00:00.000000000'], dtype='datetime64[ns]')
- HGT_1000mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 1000 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_1000mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_100mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 100 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_100mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_150mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 150 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_150mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_200mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 200 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_200mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_250mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 250 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_250mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_300mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 300 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_300mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_350mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 350 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_350mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_400mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 400 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_400mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_450mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 450 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_450mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_500mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 500 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_500mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_550mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 550 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_550mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_600mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 600 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_600mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_650mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 650 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_650mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_700mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 700 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_700mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_750mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 750 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_750mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_800mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 800 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_800mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_850mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 850 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_850mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_900mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 900 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_900mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_950mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 950 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_950mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - PRES_surface(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- surface
- long_name :
- Pressure
- short_name :
- PRES_surface
- units :
- Pa
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - PRMSL_meansealevel(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- mean sea level
- long_name :
- Pressure Reduced to MSL
- short_name :
- PRMSL_meansealevel
- units :
- Pa
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_1000mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 1000 mb
- long_name :
- Relative Humidity
- short_name :
- RH_1000mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_100mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 100 mb
- long_name :
- Relative Humidity
- short_name :
- RH_100mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_150mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 150 mb
- long_name :
- Relative Humidity
- short_name :
- RH_150mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_200mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 200 mb
- long_name :
- Relative Humidity
- short_name :
- RH_200mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_250mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 250 mb
- long_name :
- Relative Humidity
- short_name :
- RH_250mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_300mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 300 mb
- long_name :
- Relative Humidity
- short_name :
- RH_300mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_350mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 350 mb
- long_name :
- Relative Humidity
- short_name :
- RH_350mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_400mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 400 mb
- long_name :
- Relative Humidity
- short_name :
- RH_400mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_450mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 450 mb
- long_name :
- Relative Humidity
- short_name :
- RH_450mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_500mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 500 mb
- long_name :
- Relative Humidity
- short_name :
- RH_500mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_550mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 550 mb
- long_name :
- Relative Humidity
- short_name :
- RH_550mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_600mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 600 mb
- long_name :
- Relative Humidity
- short_name :
- RH_600mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_650mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 650 mb
- long_name :
- Relative Humidity
- short_name :
- RH_650mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_700mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 700 mb
- long_name :
- Relative Humidity
- short_name :
- RH_700mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_750mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 750 mb
- long_name :
- Relative Humidity
- short_name :
- RH_750mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_800mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 800 mb
- long_name :
- Relative Humidity
- short_name :
- RH_800mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_850mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 850 mb
- long_name :
- Relative Humidity
- short_name :
- RH_850mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_900mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 900 mb
- long_name :
- Relative Humidity
- short_name :
- RH_900mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_950mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 950 mb
- long_name :
- Relative Humidity
- short_name :
- RH_950mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_1000mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 1000 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_1000mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_100mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 100 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_100mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_150mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 150 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_150mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_200mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 200 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_200mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_250mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 250 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_250mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_300mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 300 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_300mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_350mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 350 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_350mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_400mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 400 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_400mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_450mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 450 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_450mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_500mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 500 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_500mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_550mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 550 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_550mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_600mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 600 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_600mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_650mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 650 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_650mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_700mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 700 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_700mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_750mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 750 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_750mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_800mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 800 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_800mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_850mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 850 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_850mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_900mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 900 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_900mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_950mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 950 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_950mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_1000mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 1000 mb
- long_name :
- Temperature
- short_name :
- TMP_1000mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_100mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 100 mb
- long_name :
- Temperature
- short_name :
- TMP_100mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_150mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 150 mb
- long_name :
- Temperature
- short_name :
- TMP_150mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_200mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 200 mb
- long_name :
- Temperature
- short_name :
- TMP_200mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_250mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 250 mb
- long_name :
- Temperature
- short_name :
- TMP_250mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_300mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 300 mb
- long_name :
- Temperature
- short_name :
- TMP_300mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_350mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 350 mb
- long_name :
- Temperature
- short_name :
- TMP_350mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_400mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 400 mb
- long_name :
- Temperature
- short_name :
- TMP_400mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_450mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 450 mb
- long_name :
- Temperature
- short_name :
- TMP_450mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_500mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 500 mb
- long_name :
- Temperature
- short_name :
- TMP_500mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_550mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 550 mb
- long_name :
- Temperature
- short_name :
- TMP_550mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_600mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 600 mb
- long_name :
- Temperature
- short_name :
- TMP_600mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_650mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 650 mb
- long_name :
- Temperature
- short_name :
- TMP_650mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_700mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 700 mb
- long_name :
- Temperature
- short_name :
- TMP_700mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_750mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 750 mb
- long_name :
- Temperature
- short_name :
- TMP_750mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_800mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 800 mb
- long_name :
- Temperature
- short_name :
- TMP_800mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_850mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 850 mb
- long_name :
- Temperature
- short_name :
- TMP_850mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_900mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 900 mb
- long_name :
- Temperature
- short_name :
- TMP_900mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_950mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 950 mb
- long_name :
- Temperature
- short_name :
- TMP_950mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_1000mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 1000 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_1000mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_100maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 100 m above ground
- long_name :
- U-Component of Wind
- short_name :
- UGRD_100maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_100mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 100 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_100mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_150mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 150 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_150mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_200mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 200 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_200mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_20maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 20 m above ground
- long_name :
- U-Component of Wind
- short_name :
- UGRD_20maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_250mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 250 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_250mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_300mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 300 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_300mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_30maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 30 m above ground
- long_name :
- U-Component of Wind
- short_name :
- UGRD_30maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_350mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 350 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_350mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_400mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 400 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_400mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_40maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 40 m above ground
- long_name :
- U-Component of Wind
- short_name :
- UGRD_40maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_450mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 450 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_450mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_500mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 500 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_500mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_50maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 50 m above ground
- long_name :
- U-Component of Wind
- short_name :
- UGRD_50maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_550mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 550 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_550mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_600mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 600 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_600mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_650mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 650 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_650mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_700mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 700 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_700mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_750mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 750 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_750mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_800mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 800 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_800mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_80maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 80 m above ground
- long_name :
- U-Component of Wind
- short_name :
- UGRD_80maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_850mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 850 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_850mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_900mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 900 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_900mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_950mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 950 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_950mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_1000mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 1000 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_1000mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_100maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 100 m above ground
- long_name :
- V-Component of Wind
- short_name :
- VGRD_100maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_100mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 100 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_100mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_150mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 150 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_150mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_200mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 200 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_200mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_20maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 20 m above ground
- long_name :
- V-Component of Wind
- short_name :
- VGRD_20maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_250mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 250 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_250mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_300mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 300 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_300mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_30maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 30 m above ground
- long_name :
- V-Component of Wind
- short_name :
- VGRD_30maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_350mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 350 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_350mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_400mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 400 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_400mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_40maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 40 m above ground
- long_name :
- V-Component of Wind
- short_name :
- VGRD_40maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_450mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 450 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_450mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_500mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 500 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_500mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_50maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 50 m above ground
- long_name :
- V-Component of Wind
- short_name :
- VGRD_50maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_550mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 550 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_550mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_600mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 600 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_600mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_650mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 650 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_650mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_700mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 700 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_700mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_750mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 750 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_750mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_800mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 800 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_800mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_80maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 80 m above ground
- long_name :
- V-Component of Wind
- short_name :
- VGRD_80maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_850mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 850 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_850mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_900mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 900 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_900mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_950mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 950 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_950mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray
- latitudePandasIndex
PandasIndex(Index([ 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, ... 57.75, 58.0, 58.25, 58.5, 58.75, 59.0, 59.25, 59.5, 59.75, 60.0], dtype='float64', name='latitude', length=241))
- longitudePandasIndex
PandasIndex(Index([ 70.0, 70.25, 70.5, 70.75, 71.0, 71.25, 71.5, 71.75, 72.0, 72.25, ... 137.75, 138.0, 138.25, 138.5, 138.75, 139.0, 139.25, 139.5, 139.75, 140.0], dtype='float64', name='longitude', length=281))
- timePandasIndex
PandasIndex(DatetimeIndex(['2021-03-23 12:00:00'], dtype='datetime64[ns]', name='time', freq=None))
- Conventions :
- COARDS
- GRIB2_grid_template :
- 0
- History :
- created by wgrib2
[9]:
print('information for group f000')
cat['f000'](date='2021032312').to_dask()
information for group f000
[9]:
<xarray.Dataset> Size: 37MB Dimensions: (time: 1, latitude: 241, longitude: 281) Coordinates: * latitude (latitude) float64 2kB 0.0 0.25 0.5 ... 59.75 60.0 * longitude (longitude) float64 2kB 70.0 70.25 ... 139.8 140.0 * time (time) datetime64[ns] 8B 2021-03-23T12:00:00 Data variables: (12/138) APTMP_2maboveground (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> CRAIN_surface (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> DPT_2maboveground (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> FRICV_surface (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> GUST_surface (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> HGT_1000mb (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> ... ... VGRD_750mb (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> VGRD_800mb (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> VGRD_80maboveground (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> VGRD_850mb (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> VGRD_900mb (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> VGRD_950mb (time, latitude, longitude) float32 271kB dask.array<chunksize=(1, 121, 281), meta=np.ndarray> Attributes: Conventions: COARDS GRIB2_grid_template: 0 History: created by wgrib2
xarray.Dataset
- time: 1
- latitude: 241
- longitude: 281
- latitude(latitude)float640.0 0.25 0.5 ... 59.5 59.75 60.0
- long_name :
- latitude
- units :
- degrees_north
array([ 0. , 0.25, 0.5 , ..., 59.5 , 59.75, 60. ])
- longitude(longitude)float6470.0 70.25 70.5 ... 139.8 140.0
- long_name :
- longitude
- units :
- degrees_east
array([ 70. , 70.25, 70.5 , ..., 139.5 , 139.75, 140. ])
- time(time)datetime64[ns]2021-03-23T12:00:00
- long_name :
- verification time generated by wgrib2 function verftime()
- reference_date :
- 2021.03.23 12:00:00 UTC
- reference_time :
- 1616500800.0
- reference_time_description :
- analyses, reference date is fixed
- reference_time_type :
- 1
- time_step :
- 0.0
- time_step_setting :
- auto
array(['2021-03-23T12:00:00.000000000'], dtype='datetime64[ns]')
- APTMP_2maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 2 m above ground
- long_name :
- Apparent Temperature
- short_name :
- APTMP_2maboveground
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - CRAIN_surface(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- surface
- long_name :
- Categorical Rain
- short_name :
- CRAIN_surface
- units :
- -
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - DPT_2maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 2 m above ground
- long_name :
- Dew Point Temperature
- short_name :
- DPT_2maboveground
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - FRICV_surface(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- surface
- long_name :
- Frictional Velocity
- short_name :
- FRICV_surface
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - GUST_surface(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- surface
- long_name :
- Wind Speed (Gust)
- short_name :
- GUST_surface
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_1000mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 1000 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_1000mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_100mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 100 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_100mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_150mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 150 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_150mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_200mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 200 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_200mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_250mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 250 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_250mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_300mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 300 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_300mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_350mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 350 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_350mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_400mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 400 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_400mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_450mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 450 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_450mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_500mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 500 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_500mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_550mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 550 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_550mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_600mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 600 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_600mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_650mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 650 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_650mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_700mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 700 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_700mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_750mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 750 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_750mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_800mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 800 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_800mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_850mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 850 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_850mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_900mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 900 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_900mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - HGT_950mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 950 mb
- long_name :
- Geopotential Height
- short_name :
- HGT_950mb
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - PRES_surface(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- surface
- long_name :
- Pressure
- short_name :
- PRES_surface
- units :
- Pa
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - PRMSL_meansealevel(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- mean sea level
- long_name :
- Pressure Reduced to MSL
- short_name :
- PRMSL_meansealevel
- units :
- Pa
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_1000mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 1000 mb
- long_name :
- Relative Humidity
- short_name :
- RH_1000mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_100mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 100 mb
- long_name :
- Relative Humidity
- short_name :
- RH_100mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_150mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 150 mb
- long_name :
- Relative Humidity
- short_name :
- RH_150mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_200mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 200 mb
- long_name :
- Relative Humidity
- short_name :
- RH_200mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_250mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 250 mb
- long_name :
- Relative Humidity
- short_name :
- RH_250mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_300mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 300 mb
- long_name :
- Relative Humidity
- short_name :
- RH_300mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_350mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 350 mb
- long_name :
- Relative Humidity
- short_name :
- RH_350mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_400mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 400 mb
- long_name :
- Relative Humidity
- short_name :
- RH_400mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_450mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 450 mb
- long_name :
- Relative Humidity
- short_name :
- RH_450mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_500mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 500 mb
- long_name :
- Relative Humidity
- short_name :
- RH_500mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_550mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 550 mb
- long_name :
- Relative Humidity
- short_name :
- RH_550mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_600mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 600 mb
- long_name :
- Relative Humidity
- short_name :
- RH_600mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_650mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 650 mb
- long_name :
- Relative Humidity
- short_name :
- RH_650mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_700mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 700 mb
- long_name :
- Relative Humidity
- short_name :
- RH_700mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_750mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 750 mb
- long_name :
- Relative Humidity
- short_name :
- RH_750mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_800mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 800 mb
- long_name :
- Relative Humidity
- short_name :
- RH_800mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_850mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 850 mb
- long_name :
- Relative Humidity
- short_name :
- RH_850mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_900mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 900 mb
- long_name :
- Relative Humidity
- short_name :
- RH_900mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - RH_950mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 950 mb
- long_name :
- Relative Humidity
- short_name :
- RH_950mb
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SNOD_surface(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- surface
- long_name :
- Snow Depth
- short_name :
- SNOD_surface
- units :
- m
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_1000mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 1000 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_1000mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_100mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 100 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_100mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_150mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 150 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_150mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_200mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 200 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_200mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_250mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 250 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_250mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_300mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 300 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_300mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_350mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 350 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_350mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_400mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 400 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_400mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_450mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 450 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_450mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_500mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 500 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_500mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_550mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 550 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_550mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_600mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 600 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_600mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_650mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 650 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_650mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_700mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 700 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_700mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_750mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 750 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_750mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_800mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 800 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_800mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_850mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 850 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_850mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_900mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 900 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_900mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - SPFH_950mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 950 mb
- long_name :
- Specific Humidity
- short_name :
- SPFH_950mb
- units :
- kg/kg
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TCDC_entireatmosphere(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- entire atmosphere
- long_name :
- Total Cloud Cover
- short_name :
- TCDC_entireatmosphere
- units :
- percent
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_1000mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 1000 mb
- long_name :
- Temperature
- short_name :
- TMP_1000mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_100mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 100 mb
- long_name :
- Temperature
- short_name :
- TMP_100mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_150mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 150 mb
- long_name :
- Temperature
- short_name :
- TMP_150mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_200mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 200 mb
- long_name :
- Temperature
- short_name :
- TMP_200mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_250mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 250 mb
- long_name :
- Temperature
- short_name :
- TMP_250mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_2maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 2 m above ground
- long_name :
- Temperature
- short_name :
- TMP_2maboveground
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_300mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 300 mb
- long_name :
- Temperature
- short_name :
- TMP_300mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_350mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 350 mb
- long_name :
- Temperature
- short_name :
- TMP_350mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_400mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 400 mb
- long_name :
- Temperature
- short_name :
- TMP_400mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_450mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 450 mb
- long_name :
- Temperature
- short_name :
- TMP_450mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_500mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 500 mb
- long_name :
- Temperature
- short_name :
- TMP_500mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_550mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 550 mb
- long_name :
- Temperature
- short_name :
- TMP_550mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_600mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 600 mb
- long_name :
- Temperature
- short_name :
- TMP_600mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_650mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 650 mb
- long_name :
- Temperature
- short_name :
- TMP_650mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_700mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 700 mb
- long_name :
- Temperature
- short_name :
- TMP_700mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_750mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 750 mb
- long_name :
- Temperature
- short_name :
- TMP_750mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_800mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 800 mb
- long_name :
- Temperature
- short_name :
- TMP_800mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_850mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 850 mb
- long_name :
- Temperature
- short_name :
- TMP_850mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_900mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 900 mb
- long_name :
- Temperature
- short_name :
- TMP_900mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - TMP_950mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 950 mb
- long_name :
- Temperature
- short_name :
- TMP_950mb
- units :
- K
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_1000mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 1000 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_1000mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_100maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 100 m above ground
- long_name :
- U-Component of Wind
- short_name :
- UGRD_100maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_100mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 100 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_100mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_10maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 10 m above ground
- long_name :
- U-Component of Wind
- short_name :
- UGRD_10maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_150mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 150 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_150mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_200mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 200 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_200mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_20maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 20 m above ground
- long_name :
- U-Component of Wind
- short_name :
- UGRD_20maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_250mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 250 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_250mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_300mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 300 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_300mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_30maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 30 m above ground
- long_name :
- U-Component of Wind
- short_name :
- UGRD_30maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_350mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 350 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_350mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_400mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 400 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_400mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_40maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 40 m above ground
- long_name :
- U-Component of Wind
- short_name :
- UGRD_40maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_450mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 450 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_450mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_500mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 500 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_500mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_50maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 50 m above ground
- long_name :
- U-Component of Wind
- short_name :
- UGRD_50maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_550mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 550 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_550mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_600mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 600 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_600mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_650mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 650 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_650mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_700mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 700 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_700mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_750mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 750 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_750mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_800mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 800 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_800mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_80maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 80 m above ground
- long_name :
- U-Component of Wind
- short_name :
- UGRD_80maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_850mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 850 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_850mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_900mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 900 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_900mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - UGRD_950mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 950 mb
- long_name :
- U-Component of Wind
- short_name :
- UGRD_950mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_1000mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 1000 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_1000mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_100maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 100 m above ground
- long_name :
- V-Component of Wind
- short_name :
- VGRD_100maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_100mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 100 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_100mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_10maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 10 m above ground
- long_name :
- V-Component of Wind
- short_name :
- VGRD_10maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_150mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 150 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_150mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_200mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 200 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_200mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_20maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 20 m above ground
- long_name :
- V-Component of Wind
- short_name :
- VGRD_20maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_250mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 250 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_250mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_300mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 300 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_300mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_30maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 30 m above ground
- long_name :
- V-Component of Wind
- short_name :
- VGRD_30maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_350mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 350 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_350mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_400mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 400 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_400mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_40maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 40 m above ground
- long_name :
- V-Component of Wind
- short_name :
- VGRD_40maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_450mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 450 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_450mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_500mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 500 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_500mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_50maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 50 m above ground
- long_name :
- V-Component of Wind
- short_name :
- VGRD_50maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_550mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 550 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_550mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_600mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 600 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_600mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_650mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 650 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_650mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_700mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 700 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_700mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_750mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 750 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_750mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_800mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 800 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_800mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_80maboveground(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 80 m above ground
- long_name :
- V-Component of Wind
- short_name :
- VGRD_80maboveground
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_850mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 850 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_850mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_900mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 900 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_900mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray - VGRD_950mb(time, latitude, longitude)float32dask.array<chunksize=(1, 121, 281), meta=np.ndarray>
- level :
- 950 mb
- long_name :
- V-Component of Wind
- short_name :
- VGRD_950mb
- units :
- m/s
Array Chunk Bytes 264.54 kiB 132.82 kiB Shape (1, 241, 281) (1, 121, 281) Dask graph 2 chunks in 2 graph layers Data type float32 numpy.ndarray
- latitudePandasIndex
PandasIndex(Index([ 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, ... 57.75, 58.0, 58.25, 58.5, 58.75, 59.0, 59.25, 59.5, 59.75, 60.0], dtype='float64', name='latitude', length=241))
- longitudePandasIndex
PandasIndex(Index([ 70.0, 70.25, 70.5, 70.75, 71.0, 71.25, 71.5, 71.75, 72.0, 72.25, ... 137.75, 138.0, 138.25, 138.5, 138.75, 139.0, 139.25, 139.5, 139.75, 140.0], dtype='float64', name='longitude', length=281))
- timePandasIndex
PandasIndex(DatetimeIndex(['2021-03-23 12:00:00'], dtype='datetime64[ns]', name='time', freq=None))
- Conventions :
- COARDS
- GRIB2_grid_template :
- 0
- History :
- created by wgrib2
[ ]:
[10]:
def print_dict(d, indent=0):
for key, value in d.items():
if isinstance(value, dict):
print(' ' * indent + f"\033[1;32m{key}:\033[0m") #\033[1;32m{k}:\033[0m
print_dict(value, indent + 4)
else:
print(' ' * indent + f"\033[1;32m{key}:\033[0m {value if value is not None else 'null'}")
[ ]: